The warming is happening much faster than most of the major previous climate shifts. This is way beyond the typical upheaval when 'normal' ice ages start or stop. This is matching most closely to the biggest extinction event in geologic history. If you are up to it, this team of climate scientists have a very informative blog about how dead serious this is becoming. https://arctic-news.blogspot.com/ There is also a retired weather forcaster, Guy On Climate, who focuses on daily impacts, like the forest fires in NY and NJ.
https://en.wikipedia.org/wiki/Permian%E2%80%93Triassic_extinction_event
PermianTriassic extinction event
From Wikipedia, the free encyclopedia
"Great Dying" redirects here. For other uses, see Great Dying (disambiguation).
Marine extinction intensity during Phanerozoic%Millions of years ago(H)KPgTrJPTrCapLate DOS
Plot of extinction intensity (percentage of marine genera that are present in each interval of time but do not exist in the following interval) vs time in the past.[1] Geological periods are annotated (by abbreviation and colour) above. The PermianTriassic extinction event is the most significant event for marine genera, with just over 50% (according to this source) perishing. (source and image info)
PermianTriassic boundary at Frazer Beach in New South Wales, with the End Permian extinction event located just above the coal layer[2]
Approximately 251.9 million years ago, the PermianTriassic (PT, PTr) extinction event (PTME; also known as the Late Permian extinction event,[3] the Latest Permian extinction event,[4] the End-Permian extinction event,[5][6] and colloquially as the Great Dying)[7][8] forms the boundary between the Permian and Triassic geologic periods, and with them the Paleozoic and Mesozoic eras.[9] It is Earth's most severe known extinction event,[10][11] with the extinction of 57% of biological families, 83% of genera, 81% of marine species[12][13][14] and 70% of terrestrial vertebrate species.[15] It is also the greatest known mass extinction of insects.[16] It is the greatest of the "Big Five" mass extinctions of the Phanerozoic.[17] There is evidence for one to three distinct pulses, or phases, of extinction.[15][18]
The scientific consensus is that the main cause of the extinction was the flood basalt volcanic eruptions that created the Siberian Traps,[19] which released sulfur dioxide and carbon dioxide, resulting in euxinia (oxygen-starved, sulfurous oceans),[20][21] elevating global temperatures,[22][23][24] and acidifying the oceans.[25][26][3] The level of atmospheric carbon dioxide rose from around 400 ppm to 2,500 ppm with approximately 3,900 to 12,000 gigatonnes of carbon being added to the ocean-atmosphere system during this period.[22] Several other contributing factors have been proposed, including the emission of carbon dioxide from the burning of oil and coal deposits ignited by the eruptions;[27][28] emissions of methane from the gasification of methane clathrates;[29] emissions of methane by novel methanogenic microorganisms nourished by minerals dispersed in the eruptions;[30][31][32] longer and more intense El Niño events;[33] and an extraterrestrial impact which created the Araguainha crater and caused seismic release of methane[34][35][36] and the destruction of the ozone layer with increased exposure to solar radiation.[37][38][39]